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The unique characteristic of vaccination is that it not only re-
duces the incidence of disease in those immunized but also
indirectly protects nonvaccinated susceptibles against infec-
tion (produces herd-immunity). The bulk of economic evalu-
ations of vaccination programs continue to use models that
cannot take into account the indirect effects produced by
herd-immunity. Here, the authors illustrate the importance of
incorporating herd-immunity externalities when assessing
the cost-effectiveness of vaccination programs. To do this,

they compare 2 methods of estimating the benefits of routine
mass vaccination: one that includes herd-immunity (dy-
namic approach) and one that does not (static approach).
Finally, they use the results to clarify a number of misconcep-
tions that are common in the literature concerning herd-
immunity and dynamical effects produced by models. Key
words: infectious diseases; externality; modeling; vaccina-
tion; dynamic models. (Med Decis Making 2003;23:76-82)

he demand for economic evaluation of health in-
terventions has risen dramatically in the past
decade’ and is increasingly being used by agencies and
government organizations as an aid to decision mak-
ing.? To ensure the quality of economic evaluation and
standardization/comparability of methods/results, nu-
merous guidelines have been published.*®
It has been suggested that additional specific guide-
lines may be needed for the economic evaluation of
vaccination programs.”® The reasoning behind this
stems from the unique characteristic of vaccination
against infectious disease: Mass vaccination not only
reduces the incidence of disease in those immunized
but also indirectly protects nonvaccinated sus-
ceptibles against infection. The concept of indirect pro-
tection of susceptibles (e.g., nonvaccinees) is termed
herd-immunity.*"" These herd-immunity effects have
many of the characteristics of public goods (or even
public bads, see later); hence, vaccination programs
tend to be funded wholly or partially by governments
to help ensure optimal uptake. Therefore, the appropri-
ate perspective of most economic analyses of immuni-
zation programs is that of society rather than the indi-
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vidual, requiring herd-immunity effects to be incorpo-
rated in the analysis.

Although there are many types of models that are
used to predict the impact of vaccination, they can be
broken down into 2 main categories: 1) dynamic and 2)
static. The major difference between these types of
analysis is that in dynamic models, the rate at which
susceptibles become infected is dependent on the
number of infectious individuals in the population
(thus, the system is inherently nonlinear),**'* whereas
static models treat this rate as a fixed parameter.® Since
mass vaccination results in fewer infectious individu-
als in the population, under the dynamic framework,
the rate at which susceptibles become infected will de-
cline, whereas under a static framework, this rate re-
mains unaltered (although there may be fewer
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susceptibles to act on due to vaccination). Thus, dy-
namic models capture herd-immunity effects, whereas
static models omit them.

Currently, the bulk of economic evaluations of vac-
cination programs continue to use static models, such
as decision analysis Markov models and cohort mod-
els, and therefore do not take into account the indirect
effects produced by herd-immunity. Furthermore, au-
thors using static models occasionally claim to be tak-
ing account of herd-immunity effects™ This comes
from a misunderstanding of what herd-immunity is,
what its effects are, and how to incorporate it into deci-
sion analyses. In this article, we illustrate and describe
the effect of herd-immunity on the dynamics of infec-
tion using routine varicella vaccination as an example.
We compare results from a dynamic model with those
of a static model to illustrate and quantify the impact of
incorporating herd-immunity externalities. It should
be noted that the dynamic model used here is a simpli-
fied version of the one recently used for predicting the
impact of varicella vaccination (for further results, see
refs. 14-16). These simplifications are made for ease of
exposition.

METHODS
Mathematical Models

The dynamic model used here is the realistic age-
structured deterministic model of varicella presented
in Brisson and others™ (see the appendix for a descrip-
tion of the model). The single difference between the
static model and the dynamic model used here is that
the force of infection (per-susceptible rate of infection,
sometimes termed the attack rate) in the static model
remains constant through time, whereas in the dy-
namic model, the rate at which susceptibles become in-
fected is assumed to be a function of the number of in-
fectious individuals in the population at a given point
in time, multiplied by the effective contact rate be-
tween susceptibles and infectious individuals. That s,

A = fixed (static) and
A(t) = BI(#) (dynamic),

where A is a (1 x k) vector representing the force of in-
fection in each of the k age groups, B is a k x k matrix
representing the effective contact rate between individ-
uals by age group, and I(f) gives the number of infec-
tious individuals in each age group at time t. Static
models are usually applied to a single aging cohort,"”
whereas dynamic models are run for many years to al-
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low the full effects of the intervention to become appar-
ent. For comparability, the static model presented here
is applied to multiple cohorts. It should be noted that in
a cohort model, since the force of infection is constant
with respect to time, the cost-effectiveness results are
identical for single or multiple cohort models provided
that all cohorts are followed for the same length of time
(usually until death).®?

Parameter Estimates

Simulations were performed for a population with
characteristics similar to England and Wales. The pop-
ulation size and average life expectancy were assumed
to be 50 m and 75 years, respectively. The age-specific
force of varicella infection (the per-susceptible rate of
infection) in England and Wales was taken from pre-
vaccination data.'®

The different health outcomes were taken from
Brisson and others." The predicted number of cases of
varicella was estimated directly from the models. The
estimated varicella case fatality was applied to the pre-
dicted number of cases. For simplicity, we assume that
vaccine is perfect; that is, all vaccine recipients will de-
rive lifelong immunity after a single dose.

Vaccination Programs

All simulations are with 80% coverage unless other-
wise stated. The different vaccination strategies inves-
tigated were

e routine vaccination at 1 year of age (infant vaccination)
and

e routine vaccination at 11 years of age (adolescent
vaccination).

RESULTS
Dynamics and Incidence of Infection

The introduction of routine infant mass vaccination
typically produces dynamic effects that are composed
of 3 phases (Figure 1a).

e Honeymoon period: Shortly after the start of vaccina-
tion (at high levels of coverage), the number of
susceptibles falls to such low levels that continued en-
demic transmission is no longer possible. This results
in a period of very low incidence, which is commonly
called the “honeymoon period.”

e Posthoneymoon epidemic: Over time, the low inci-
dence of infection allows susceptibles (here, individu-
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Figure 1  Prevaccination and postvaccination dynamics of varicella infection. Estimated age-specific incidence of natural varicella after the

introduction (at time 0) of infant vaccination using (a) a dynamic model and (b) a static model (80% coverage, perfect vaccine). The various epi-
demiological phases are 1) prevaccination, 2) honeyvmoon period, 3) posthoneymoon epidemic, and 4) equilibrium. (c) Estimated varicella inci-
dence over time by vaccine strategy (80% coverage, perfect vaccine) using a dynamic (full line) and static (dotted line) model.

als who have not been vaccinated) to accumulate via
births. Once a threshold of susceptibles is surpassed,
an epidemic occurs, which is called the “post-
honeymoon epidemic.”

e Postvaccination endemic equilibrium: After the
posthoneymoon epidemic, infection settles into a new
equilibrium with much lower incidence than before
vaccination.

Such dynamics have been observed following mea-
sles and mumps vaccination.*** Static models cannot
capture these dynamics; instead, the incidence of in-
fection steadily declines as the number of cohorts vac-
cinated increases in the population (Figure 1b). Fig-
ure 1c shows the predicted incidence of varicella
following vaccination using both the static and dy-
namic model. The impact of herd-immunity on the in-
cidence of infection can be visualized as the difference
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between the dynamic (full line) and the static model
(dotted line). Quantitatively, with the infant strategy
(80% coverage), herd-immunity (difference between
the 2 models) is estimated to prevent 10 m cases of
varicella over the first 80 years of vaccination in a coun-
try similar to England and Wales (50 m).

The extent of protection conferred by herd-
immunity depends on the amount of continuing infec-
tion in the community. If only a small proportion of the
population is immunized (low coverage and/or tar-
geted vaccination and/or poor vaccine efficacy), then
vaccination confers little or no herd-immunity since
the force of infection acting on those who remain sus-
ceptible remains relatively unchanged. Here, we illus-
trate this point using adolescent vaccination against
varicella as an example. The predicted number of cases
of varicella over time is similar using the dynamic and
static approaches (Figure 1c). This is expected since the
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Figure 2 Prevaccination and postvaccination dynamics of varicella infection. Estimated age-specific mortality due to varicella in England
and Wales after the introduction of infant vaccination using (a) a dynamic and (b) a static model (80% coverage, perfect vaccine).

bulk of cases (85%) are in children younger than 11
years; thus, vaccinating 11-year-olds has little effect on
the overall force of infection of varicella (i.e., the risk of
children getting chicken pox).

Shift in the Age at Infection
and Morbidity of Disease

Routine infant vaccination will cause the average
age at infection to rise.’ The shift in the age at infection
is due to 2 factors:

e Cohort effect: For routine infant immunization, as vac-
cinated cohorts age, infection becomes concentrated in
the older unvaccinated cohorts. This cohort effect can
be clearly seen with the static model (Figure 1b) since
herd-immunity effects do not confound it. In Figure 1b,
incidence first declines in children while it is constant
in the older age groups. Hence, the proportion of adult
cases increases. Only when all cohorts are vaccinated
does this effect disappear.

e Herd-immunity effect: Vaccination at high levels of
coverage leads to reduced circulation of infection. As a
result, susceptibles are less likely to come into contact
with infectious individuals and therefore tend to be
older when they eventually become infected. The shift
in the age at infection can clearly be seen in Figure 1a.
The number of cases of varicella in adults older than 45
years of age is expected to increase by more than 3-fold
after vaccination. Note that here the number of adult
cases increases, not just the proportion. Also remember
that there is no waning immunity: Waning vaccine-
induced immunity is not necessary to induce an in-
crease in the number of adult cases.
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An increase in the number of adult cases can lead to
a rise in mortality and morbidity if disease severity in-
creases with age at infection. Many viral infections are
more severe if contracted as adults; examples include
polio, hepatitis A virus, and mumps, and such perverse
outcomes arising from mass infant vaccination have
been observed for rubella in Greece® (rubella is a be-
nign childhood infection, which can have devastating
effects on the fetus if a mother contracts the virus dur-
ing pregnancy). These shifts in the age at infection can
also have beneficial effects if disease is most severe in
young children (e.g., pertussis and measles in develop-
ing countries).

Since static models cannot predict an absolute in-
crease in adult cases, the choice of model can have an
important impact on the overall assessment of the ben-
efit of vaccination. We illustrate this by comparing the
predicted number of varicella deaths in England and
Wales following vaccination using the dynamic and
static models (Figure 2). Varicella deaths are used as an
example since varicella-associated case fatality in-
creases dramatically with age. The dynamic model ini-
tially produces a rapid decrease in deaths following
vaccination (Figure 2a). However, after 50 years, the
number of deaths due to varicella rises and surpasses
the prevaccination level due to the increase in the num-
ber of cases in adults. In contrast, using the static
model, the number of deaths falls as the number of co-
horts that are vaccinated increases (Figure 2b). Over the
first 80 years of vaccination, the dynamic model pre-
dicts that vaccination will produce 315 deaths over the
prevaccination level whereas the static model predicts
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Figure 3  Postvaccination equilibrium. Predicted age distribution of varicella-associated deaths in England and Wales at equilibrium by vac-
cine coverage using (a) a dynamic and (b) a static model (perfect vaccine).

that 765 deaths will be prevented. Thus, herd-immunity
(difference between the 2 models) is estimated to cause
1080 deaths over the first 80 years of vaccination in
England and Wales.

The extent to which the average age at infection will
rise following routine infant vaccination depends on
the amount of continuing infection in the community.
As the proportion of immunized individuals increases
in the population, so does the average age at infection
due to increased herd-immunity. To illustrate this, in
Figure 3, we present the estimated number of varicella
deaths in England and Wales at postvaccination equi-
librium by vaccine coverage (Figure 3). Here, coverage
is equal to the proportion immunized since the vaccine
is assumed to be perfect. For the dynamic model, the
proportion of deaths in adults increases between 0%
and 60% coverage (Figure 3a). Furthermore, only when
coverage exceeds 80% does vaccination seem to di-
minish varicella transmission sufficiently to reduce
adult mortality to levels below the prevaccination
state. In contrast, without herd-immunity (Figure 3b),
the number of deaths decreases linearly with increased
coverage and there is no shift in the age distribution of
deaths; for example, 50% coverage will reduce the
number of deaths by 50% in all age groups. This leads
to our final point: For the static model, the number of
cases or deaths prevented per immunized individual is
independent of the overall number of individuals
vaccinated (coverage). This means that the cost-
effectiveness ratio is independent of coverage (overall
size of the vaccine program), assuming there are no
fixed costs associated with setting up the program.
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However, Figure 3a clearly shows that if herd-immu-
nity is taken into account, the size of the program has a
major impact on effectiveness and thus cost-
effectiveness.

CONCLUSION

The aim of this article was to illustrate the impor-
tance of incorporating herd-immunity externalities
when assessing the health benefits of vaccination pro-
grams. To do this, we compared 2 methods of estimat-
ing the benefits of routine mass vaccination: one that
includes herd-immunity (dynamical approach) and
one that does not (static approach). We showed that be-
cause they take into account herd-immunity effects,
dynamic models

e produce nonlinear dynamics following vaccination
(Figure 1a),

e predict a higher number of cases prevented by vaccina-
tion (Figure 1c),

e produce proportional and absolute shifts in the age at
infection (Figure 2a), and

e can predict increases (or decreases) in morbidity and
mortality due to shifts in the age at infection following
vaccination (Figures 2 and 3).

These dynamical effects are dependent on the extent
to which vaccination prevents transmission of infec-
tion in the population. If only a small proportion of the
population is immunized (low coverage or targeted

Downloaded from mdm.sagepub.com at FRESNO PACIFIC UNIV on January 13, 2015


http://mdm.sagepub.com/

THE IMPACT OF HERD-IMMUNITY

vaccination) or the vaccine does not prevent the circu-
lation of the pathogen (as occurs with some vaccines),
then herd-immunity effects are negligible (Figures 1
and 3). Under such conditions, static and dynamic
models produce similar results.® Static models may
also be used as a tool to estimate the worst-case sce-
nario when herd-immunity externalities cannot pro-
duce negative effects (disease severity does not in-
crease with age). In other circumstances, dynamic
models should be used.

These results can be used to clarify a number of mis-
conceptions, which are common in the literature con-
cerning herd-immunity and dynamic effects produced
by models:

e Herd-immunity is always a good thing: We show that
herd-immunity can cause the age at infection to in-
crease, which can cause serious deleterious conse-
quences (Figures 2 and 3). It is not always a conserva-
tive assumption to ignore herd-immunity effects.
Indeed, a static model may grossly overestimate the ef-
fectiveness of mass vaccination at preventing serious
disease if the risk of developing complications in-
creases with age at infection, as is shown here for
chicken pox.

e Waning vaccine-induced immunity is necessary to cause
an increase in adult cases: Although waning vaccine-
induced immunity can exacerbate increases in the av-

erage age at infection, it is not necessary, as we have
demonstrated here.

e Static models can give rise to shifts in the age at infec-
tion: If a static model is applied to successive cohorts,
then the models can produce a temporary shift in the
age at infection. These shifts are due to a cohort effect
(the vaccinated cohorts make up the younger age
groups) and not herd-immunity. Once all the cohorts
have been vaccinated, the age distribution of infection
will be identical to the prevaccination state. Further-
more, this will produce only a temporary proportional
increase in adult infections (as opposed to absolute in-
creases) as the rate of infection in the older (unvacci-
nated) cohorts remains the same as it was before vacci-
nation. Hence, static models cannot investigate
whether shifts in the age at infection following vaccina-
tion will produce increases (or indeed decreases) in
morbidity.

There is a large literature on models of infectious
disease transmission dating back to Bernouilli in the
18th century (for a comprehensive textbook on the sub-
ject, see Anderson and May® or Bailey**). Analysts who
ignore this literature (because of complexity) and as-
sume that the disease in question is not infectious (as
static models implicitly assume) do so at the risk of
biasing their results.

APPENDIX
Dynamic Model: Mathematical Structure

The modelzgossesses 66 age cohorts (0,1, ... 65+). Follow-
ing Schenzle,” children enter continuously throughout the
year into the 1st age cohort at 6 months of age. Thereafter, in-
dividuals change age cohorts at the beginning of each school
year (boundary conditions). Vaccination is performed at the
end of the year as individuals move up an age class. Within
each age cohort i, the differential equations for this determin-
istic model are as follows:

dS()/dt = B;— [A{t) + v, + w]S(t) (1)
dE()/dt = \(1)S(1) — (6 + W)E(D) 2)
dI(#)/dt = cE{t) - (0. + W)I(D) (3)

dR(t)/dt = a{t) — R,

() + v;5{(1), (4)

where the number of individuals in age cohort 7 at time t who
are varicella susceptible, naturally infected but not infec-

tious, infectious, and immune are given by the state variables
S8, E(D, I(t), and R(1), respectively; B; is the birth rate; 1, is
the mortality rate; v; is the vaccine coverage (by age); 6 and o
are rates of flow from latent to infectious and infectious to im-
mune groups; and A(f) is the force of infection by age group
(see the Methods section and Brisson and others for details).
The initial conditions for the set of equations are taken to be
the prevaccination equilibrium number of individuals in
each epidemiological class by age, which are determined by
treating A,(0) as a fixed parameter (i.e., by using the static co-
hort model). The equations are solved numerically using a
fourth-order Runge-Kutta algorithm.*

Note that the model (above) differs from that used by
Brisson and others'* only in that vaccination is assumed to re-
sult in lifelong immunity; hence, it is no longer necessary to
include vaccinated classes (with varying degrees of immu-
nity and infectiousness), as all those who are vaccinated pass
directly into the immune class (R(%)).
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